Metamath Proof Explorer


Theorem thlbas

Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K = toHL W
thlbas.c C = ClSubSp W
Assertion thlbas C = Base K

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlbas.c C = ClSubSp W
3 2 fvexi C V
4 eqid toInc C = toInc C
5 4 ipobas C V C = Base toInc C
6 3 5 ax-mp C = Base toInc C
7 baseid Base = Slot Base ndx
8 1re 1
9 1nn 1
10 1nn0 1 0
11 1lt10 1 < 10
12 9 10 10 11 declti 1 < 11
13 8 12 ltneii 1 11
14 basendx Base ndx = 1
15 ocndx oc ndx = 11
16 14 15 neeq12i Base ndx oc ndx 1 11
17 13 16 mpbir Base ndx oc ndx
18 7 17 setsnid Base toInc C = Base toInc C sSet oc ndx ocv W
19 6 18 eqtri C = Base toInc C sSet oc ndx ocv W
20 eqid ocv W = ocv W
21 1 2 4 20 thlval W V K = toInc C sSet oc ndx ocv W
22 21 fveq2d W V Base K = Base toInc C sSet oc ndx ocv W
23 19 22 eqtr4id W V C = Base K
24 base0 = Base
25 fvprc ¬ W V ClSubSp W =
26 2 25 eqtrid ¬ W V C =
27 fvprc ¬ W V toHL W =
28 1 27 eqtrid ¬ W V K =
29 28 fveq2d ¬ W V Base K = Base
30 24 26 29 3eqtr4a ¬ W V C = Base K
31 23 30 pm2.61i C = Base K