Metamath Proof Explorer


Theorem thlbas

Description: Base set of the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses thlval.k K = toHL W
thlbas.c C = ClSubSp W
Assertion thlbas C = Base K

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlbas.c C = ClSubSp W
3 2 fvexi C V
4 eqid toInc C = toInc C
5 4 ipobas C V C = Base toInc C
6 3 5 ax-mp C = Base toInc C
7 baseid Base = Slot Base ndx
8 basendxnocndx Base ndx oc ndx
9 7 8 setsnid Base toInc C = Base toInc C sSet oc ndx ocv W
10 6 9 eqtri C = Base toInc C sSet oc ndx ocv W
11 eqid ocv W = ocv W
12 1 2 4 11 thlval W V K = toInc C sSet oc ndx ocv W
13 12 fveq2d W V Base K = Base toInc C sSet oc ndx ocv W
14 10 13 eqtr4id W V C = Base K
15 base0 = Base
16 fvprc ¬ W V ClSubSp W =
17 2 16 eqtrid ¬ W V C =
18 fvprc ¬ W V toHL W =
19 1 18 eqtrid ¬ W V K =
20 19 fveq2d ¬ W V Base K = Base
21 15 17 20 3eqtr4a ¬ W V C = Base K
22 14 21 pm2.61i C = Base K