Metamath Proof Explorer


Theorem thlle

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K = toHL W
thlbas.c C = ClSubSp W
thlle.i I = toInc C
thlle.l ˙ = I
Assertion thlle ˙ = K

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlbas.c C = ClSubSp W
3 thlle.i I = toInc C
4 thlle.l ˙ = I
5 pleid le = Slot ndx
6 10re 10
7 1nn0 1 0
8 0nn0 0 0
9 1nn 1
10 0lt1 0 < 1
11 7 8 9 10 declt 10 < 11
12 6 11 ltneii 10 11
13 plendx ndx = 10
14 ocndx oc ndx = 11
15 13 14 neeq12i ndx oc ndx 10 11
16 12 15 mpbir ndx oc ndx
17 5 16 setsnid I = I sSet oc ndx ocv W
18 4 17 eqtri ˙ = I sSet oc ndx ocv W
19 eqid ocv W = ocv W
20 1 2 3 19 thlval W V K = I sSet oc ndx ocv W
21 20 fveq2d W V K = I sSet oc ndx ocv W
22 18 21 eqtr4id W V ˙ = K
23 5 str0 =
24 2 fvexi C V
25 3 ipolerval C V x y | x y C x y = I
26 24 25 ax-mp x y | x y C x y = I
27 4 26 eqtr4i ˙ = x y | x y C x y
28 opabn0 x y | x y C x y x y x y C x y
29 vex x V
30 vex y V
31 29 30 prss x C y C x y C
32 elfvex x ClSubSp W W V
33 32 2 eleq2s x C W V
34 33 ad2antrr x C y C x y W V
35 31 34 sylanbr x y C x y W V
36 35 exlimivv x y x y C x y W V
37 28 36 sylbi x y | x y C x y W V
38 37 necon1bi ¬ W V x y | x y C x y =
39 27 38 eqtrid ¬ W V ˙ =
40 fvprc ¬ W V toHL W =
41 1 40 eqtrid ¬ W V K =
42 41 fveq2d ¬ W V K =
43 23 39 42 3eqtr4a ¬ W V ˙ = K
44 22 43 pm2.61i ˙ = K