Metamath Proof Explorer


Theorem thlleval

Description: Ordering on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K = toHL W
thlbas.c C = ClSubSp W
thlleval.l ˙ = K
Assertion thlleval S C T C S ˙ T S T

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlbas.c C = ClSubSp W
3 thlleval.l ˙ = K
4 2 fvexi C V
5 eqid toInc C = toInc C
6 eqid toInc C = toInc C
7 1 2 5 6 thlle toInc C = K
8 3 7 eqtr4i ˙ = toInc C
9 5 8 ipole C V S C T C S ˙ T S T
10 4 9 mp3an1 S C T C S ˙ T S T