Metamath Proof Explorer


Theorem thlval

Description: Value of the Hilbert lattice. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K = toHL W
thlval.c C = ClSubSp W
thlval.i I = toInc C
thlval.o ˙ = ocv W
Assertion thlval W V K = I sSet oc ndx ˙

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thlval.c C = ClSubSp W
3 thlval.i I = toInc C
4 thlval.o ˙ = ocv W
5 elex W V W V
6 fveq2 h = W ClSubSp h = ClSubSp W
7 6 2 eqtr4di h = W ClSubSp h = C
8 7 fveq2d h = W toInc ClSubSp h = toInc C
9 8 3 eqtr4di h = W toInc ClSubSp h = I
10 fveq2 h = W ocv h = ocv W
11 10 4 eqtr4di h = W ocv h = ˙
12 11 opeq2d h = W oc ndx ocv h = oc ndx ˙
13 9 12 oveq12d h = W toInc ClSubSp h sSet oc ndx ocv h = I sSet oc ndx ˙
14 df-thl toHL = h V toInc ClSubSp h sSet oc ndx ocv h
15 ovex I sSet oc ndx ˙ V
16 13 14 15 fvmpt W V toHL W = I sSet oc ndx ˙
17 1 16 eqtrid W V K = I sSet oc ndx ˙
18 5 17 syl W V K = I sSet oc ndx ˙