Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
thlval
Next ⟩
thlbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
thlval
Description:
Value of the Hilbert lattice.
(Contributed by
Mario Carneiro
, 25-Oct-2015)
Ref
Expression
Hypotheses
thlval.k
⊢
K
=
toHL
⁡
W
thlval.c
⊢
C
=
ClSubSp
⁡
W
thlval.i
⊢
I
=
toInc
⁡
C
thlval.o
⊢
⊥
˙
=
ocv
⁡
W
Assertion
thlval
⊢
W
∈
V
→
K
=
I
sSet
oc
⁡
ndx
⊥
˙
Proof
Step
Hyp
Ref
Expression
1
thlval.k
⊢
K
=
toHL
⁡
W
2
thlval.c
⊢
C
=
ClSubSp
⁡
W
3
thlval.i
⊢
I
=
toInc
⁡
C
4
thlval.o
⊢
⊥
˙
=
ocv
⁡
W
5
elex
⊢
W
∈
V
→
W
∈
V
6
fveq2
⊢
h
=
W
→
ClSubSp
⁡
h
=
ClSubSp
⁡
W
7
6
2
eqtr4di
⊢
h
=
W
→
ClSubSp
⁡
h
=
C
8
7
fveq2d
⊢
h
=
W
→
toInc
⁡
ClSubSp
⁡
h
=
toInc
⁡
C
9
8
3
eqtr4di
⊢
h
=
W
→
toInc
⁡
ClSubSp
⁡
h
=
I
10
fveq2
⊢
h
=
W
→
ocv
⁡
h
=
ocv
⁡
W
11
10
4
eqtr4di
⊢
h
=
W
→
ocv
⁡
h
=
⊥
˙
12
11
opeq2d
⊢
h
=
W
→
oc
⁡
ndx
ocv
⁡
h
=
oc
⁡
ndx
⊥
˙
13
9
12
oveq12d
⊢
h
=
W
→
toInc
⁡
ClSubSp
⁡
h
sSet
oc
⁡
ndx
ocv
⁡
h
=
I
sSet
oc
⁡
ndx
⊥
˙
14
df-thl
⊢
toHL
=
h
∈
V
⟼
toInc
⁡
ClSubSp
⁡
h
sSet
oc
⁡
ndx
ocv
⁡
h
15
ovex
⊢
I
sSet
oc
⁡
ndx
⊥
˙
∈
V
16
13
14
15
fvmpt
⊢
W
∈
V
→
toHL
⁡
W
=
I
sSet
oc
⁡
ndx
⊥
˙
17
1
16
eqtrid
⊢
W
∈
V
→
K
=
I
sSet
oc
⁡
ndx
⊥
˙
18
5
17
syl
⊢
W
∈
V
→
K
=
I
sSet
oc
⁡
ndx
⊥
˙