Metamath Proof Explorer


Theorem threehalves

Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Assertion threehalves 3 2 = 1.5

Proof

Step Hyp Ref Expression
1 3re 3
2 2re 2
3 2ne0 2 0
4 1 2 3 redivcli 3 2
5 4 recni 3 2
6 1nn0 1 0
7 5re 5
8 dpcl 1 0 5 1.5
9 6 7 8 mp2an 1.5
10 9 recni 1.5
11 2cnne0 2 2 0
12 5 10 11 3pm3.2i 3 2 1.5 2 2 0
13 5nn0 5 0
14 3nn0 3 0
15 0nn0 0 0
16 eqid 15 = 15
17 df-2 2 = 1 + 1
18 17 oveq1i 2 + 1 = 1 + 1 + 1
19 2p1e3 2 + 1 = 3
20 18 19 eqtr3i 1 + 1 + 1 = 3
21 5p5e10 5 + 5 = 10
22 6 13 6 13 16 16 20 15 21 decaddc 15 + 15 = 30
23 6 13 6 13 14 15 22 dpadd 1.5 + 1.5 = 3.0
24 14 dp0u 3.0 = 3
25 23 24 eqtri 1.5 + 1.5 = 3
26 10 times2i 1.5 2 = 1.5 + 1.5
27 1 recni 3
28 11 simpli 2
29 27 28 3 divcan1i 3 2 2 = 3
30 25 26 29 3eqtr4ri 3 2 2 = 1.5 2
31 mulcan2 3 2 1.5 2 2 0 3 2 2 = 1.5 2 3 2 = 1.5
32 31 biimpa 3 2 1.5 2 2 0 3 2 2 = 1.5 2 3 2 = 1.5
33 12 30 32 mp2an 3 2 = 1.5