Database
BASIC TOPOLOGY
Filters and filter bases
Topological rings, fields, vector spaces
tlmlmod
Next ⟩
tlmtrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
tlmlmod
Description:
A topological module is a left module.
(Contributed by
Mario Carneiro
, 5-Oct-2015)
Ref
Expression
Assertion
tlmlmod
⊢
W
∈
TopMod
→
W
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋅
𝑠𝑓
⁡
W
=
⋅
𝑠𝑓
⁡
W
2
eqid
⊢
TopOpen
⁡
W
=
TopOpen
⁡
W
3
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
4
eqid
⊢
TopOpen
⁡
Scalar
⁡
W
=
TopOpen
⁡
Scalar
⁡
W
5
1
2
3
4
istlm
⊢
W
∈
TopMod
↔
W
∈
TopMnd
∧
W
∈
LMod
∧
Scalar
⁡
W
∈
TopRing
∧
⋅
𝑠𝑓
⁡
W
∈
TopOpen
⁡
Scalar
⁡
W
×
t
TopOpen
⁡
W
Cn
TopOpen
⁡
W
6
5
simplbi
⊢
W
∈
TopMod
→
W
∈
TopMnd
∧
W
∈
LMod
∧
Scalar
⁡
W
∈
TopRing
7
6
simp2d
⊢
W
∈
TopMod
→
W
∈
LMod