Metamath Proof Explorer


Theorem tlmtmd

Description: A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tlmtmd W TopMod W TopMnd

Proof

Step Hyp Ref Expression
1 eqid 𝑠𝑓 W = 𝑠𝑓 W
2 eqid TopOpen W = TopOpen W
3 eqid Scalar W = Scalar W
4 eqid TopOpen Scalar W = TopOpen Scalar W
5 1 2 3 4 istlm W TopMod W TopMnd W LMod Scalar W TopRing 𝑠𝑓 W TopOpen Scalar W × t TopOpen W Cn TopOpen W
6 5 simplbi W TopMod W TopMnd W LMod Scalar W TopRing
7 6 simp1d W TopMod W TopMnd