Metamath Proof Explorer


Theorem tmdlactcn

Description: The left group action of element A in a topological monoid G is a continuous function. (Contributed by FL, 18-Mar-2008) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgplacthmeo.1 F = x X A + ˙ x
tgplacthmeo.2 X = Base G
tgplacthmeo.3 + ˙ = + G
tgplacthmeo.4 J = TopOpen G
Assertion tmdlactcn G TopMnd A X F J Cn J

Proof

Step Hyp Ref Expression
1 tgplacthmeo.1 F = x X A + ˙ x
2 tgplacthmeo.2 X = Base G
3 tgplacthmeo.3 + ˙ = + G
4 tgplacthmeo.4 J = TopOpen G
5 simpl G TopMnd A X G TopMnd
6 4 2 tmdtopon G TopMnd J TopOn X
7 6 adantr G TopMnd A X J TopOn X
8 simpr G TopMnd A X A X
9 7 7 8 cnmptc G TopMnd A X x X A J Cn J
10 7 cnmptid G TopMnd A X x X x J Cn J
11 4 3 5 7 9 10 cnmpt1plusg G TopMnd A X x X A + ˙ x J Cn J
12 1 11 eqeltrid G TopMnd A X F J Cn J