Database
BASIC TOPOLOGY
Filters and filter bases
Topological groups
tmdmnd
Next ⟩
tmdtps
Metamath Proof Explorer
Ascii
Unicode
Theorem
tmdmnd
Description:
A topological monoid is a monoid.
(Contributed by
Mario Carneiro
, 19-Sep-2015)
Ref
Expression
Assertion
tmdmnd
⊢
G
∈
TopMnd
→
G
∈
Mnd
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
+
𝑓
⁡
G
=
+
𝑓
⁡
G
2
eqid
⊢
TopOpen
⁡
G
=
TopOpen
⁡
G
3
1
2
istmd
⊢
G
∈
TopMnd
↔
G
∈
Mnd
∧
G
∈
TopSp
∧
+
𝑓
⁡
G
∈
TopOpen
⁡
G
×
t
TopOpen
⁡
G
Cn
TopOpen
⁡
G
4
3
simp1bi
⊢
G
∈
TopMnd
→
G
∈
Mnd