Metamath Proof Explorer


Theorem tmdmnd

Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Assertion tmdmnd G TopMnd G Mnd

Proof

Step Hyp Ref Expression
1 eqid + 𝑓 G = + 𝑓 G
2 eqid TopOpen G = TopOpen G
3 1 2 istmd G TopMnd G Mnd G TopSp + 𝑓 G TopOpen G × t TopOpen G Cn TopOpen G
4 3 simp1bi G TopMnd G Mnd