Metamath Proof Explorer


Theorem tmsms

Description: The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k K = toMetSp D
Assertion tmsms D Met X K MetSp

Proof

Step Hyp Ref Expression
1 tmsbas.k K = toMetSp D
2 metxmet D Met X D ∞Met X
3 1 tmsxms D ∞Met X K ∞MetSp
4 2 3 syl D Met X K ∞MetSp
5 1 tmsds D ∞Met X D = dist K
6 2 5 syl D Met X D = dist K
7 1 tmsbas D ∞Met X X = Base K
8 2 7 syl D Met X X = Base K
9 8 fveq2d D Met X Met X = Met Base K
10 6 9 eleq12d D Met X D Met X dist K Met Base K
11 10 ibi D Met X dist K Met Base K
12 ssid Base K Base K
13 metres2 dist K Met Base K Base K Base K dist K Base K × Base K Met Base K
14 11 12 13 sylancl D Met X dist K Base K × Base K Met Base K
15 eqid TopOpen K = TopOpen K
16 eqid Base K = Base K
17 eqid dist K Base K × Base K = dist K Base K × Base K
18 15 16 17 isms K MetSp K ∞MetSp dist K Base K × Base K Met Base K
19 4 14 18 sylanbrc D Met X K MetSp