Metamath Proof Explorer


Theorem tmstopn

Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsbas.k K = toMetSp D
tmstopn.j J = MetOpen D
Assertion tmstopn D ∞Met X J = TopOpen K

Proof

Step Hyp Ref Expression
1 tmsbas.k K = toMetSp D
2 tmstopn.j J = MetOpen D
3 eqid Base ndx X dist ndx D = Base ndx X dist ndx D
4 3 1 tmslem D ∞Met X X = Base K D = dist K MetOpen D = TopOpen K
5 4 simp3d D ∞Met X MetOpen D = TopOpen K
6 2 5 syl5eq D ∞Met X J = TopOpen K