Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
tmstopn
Next ⟩
tmsxms
Metamath Proof Explorer
Ascii
Unicode
Theorem
tmstopn
Description:
The topology of a constructed metric.
(Contributed by
Mario Carneiro
, 2-Sep-2015)
Ref
Expression
Hypotheses
tmsbas.k
⊢
K
=
toMetSp
⁡
D
tmstopn.j
⊢
J
=
MetOpen
⁡
D
Assertion
tmstopn
⊢
D
∈
∞Met
⁡
X
→
J
=
TopOpen
⁡
K
Proof
Step
Hyp
Ref
Expression
1
tmsbas.k
⊢
K
=
toMetSp
⁡
D
2
tmstopn.j
⊢
J
=
MetOpen
⁡
D
3
eqid
⊢
Base
ndx
X
dist
⁡
ndx
D
=
Base
ndx
X
dist
⁡
ndx
D
4
3
1
tmslem
⊢
D
∈
∞Met
⁡
X
→
X
=
Base
K
∧
D
=
dist
⁡
K
∧
MetOpen
⁡
D
=
TopOpen
⁡
K
5
4
simp3d
⊢
D
∈
∞Met
⁡
X
→
MetOpen
⁡
D
=
TopOpen
⁡
K
6
2
5
syl5eq
⊢
D
∈
∞Met
⁡
X
→
J
=
TopOpen
⁡
K