Metamath Proof Explorer


Theorem tmstopn

Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsbas.k K=toMetSpD
tmstopn.j J=MetOpenD
Assertion tmstopn D∞MetXJ=TopOpenK

Proof

Step Hyp Ref Expression
1 tmsbas.k K=toMetSpD
2 tmstopn.j J=MetOpenD
3 eqid BasendxXdistndxD=BasendxXdistndxD
4 3 1 tmslem D∞MetXX=BaseKD=distKMetOpenD=TopOpenK
5 4 simp3d D∞MetXMetOpenD=TopOpenK
6 2 5 eqtrid D∞MetXJ=TopOpenK