Metamath Proof Explorer


Theorem tmsxms

Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k K = toMetSp D
Assertion tmsxms D ∞Met X K ∞MetSp

Proof

Step Hyp Ref Expression
1 tmsbas.k K = toMetSp D
2 1 tmsds D ∞Met X D = dist K
3 1 tmsbas D ∞Met X X = Base K
4 3 fveq2d D ∞Met X ∞Met X = ∞Met Base K
5 2 4 eleq12d D ∞Met X D ∞Met X dist K ∞Met Base K
6 5 ibi D ∞Met X dist K ∞Met Base K
7 ssid Base K Base K
8 xmetres2 dist K ∞Met Base K Base K Base K dist K Base K × Base K ∞Met Base K
9 6 7 8 sylancl D ∞Met X dist K Base K × Base K ∞Met Base K
10 xmetf dist K ∞Met Base K dist K : Base K × Base K *
11 ffn dist K : Base K × Base K * dist K Fn Base K × Base K
12 fnresdm dist K Fn Base K × Base K dist K Base K × Base K = dist K
13 6 10 11 12 4syl D ∞Met X dist K Base K × Base K = dist K
14 13 2 eqtr4d D ∞Met X dist K Base K × Base K = D
15 14 fveq2d D ∞Met X MetOpen dist K Base K × Base K = MetOpen D
16 eqid MetOpen D = MetOpen D
17 1 16 tmstopn D ∞Met X MetOpen D = TopOpen K
18 15 17 eqtr2d D ∞Met X TopOpen K = MetOpen dist K Base K × Base K
19 eqid TopOpen K = TopOpen K
20 eqid Base K = Base K
21 eqid dist K Base K × Base K = dist K Base K × Base K
22 19 20 21 isxms2 K ∞MetSp dist K Base K × Base K ∞Met Base K TopOpen K = MetOpen dist K Base K × Base K
23 9 18 22 sylanbrc D ∞Met X K ∞MetSp