Metamath Proof Explorer


Theorem tmsxps

Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
tmsxps.1 φ M ∞Met X
tmsxps.2 φ N ∞Met Y
Assertion tmsxps φ P ∞Met X × Y

Proof

Step Hyp Ref Expression
1 tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
2 tmsxps.1 φ M ∞Met X
3 tmsxps.2 φ N ∞Met Y
4 eqid toMetSp M × 𝑠 toMetSp N = toMetSp M × 𝑠 toMetSp N
5 eqid Base toMetSp M = Base toMetSp M
6 eqid Base toMetSp N = Base toMetSp N
7 eqid toMetSp M = toMetSp M
8 7 tmsxms M ∞Met X toMetSp M ∞MetSp
9 2 8 syl φ toMetSp M ∞MetSp
10 eqid toMetSp N = toMetSp N
11 10 tmsxms N ∞Met Y toMetSp N ∞MetSp
12 3 11 syl φ toMetSp N ∞MetSp
13 4 5 6 9 12 1 xpsdsfn2 φ P Fn Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N
14 fnresdm P Fn Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = P
15 13 14 syl φ P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N = P
16 4 xpsxms toMetSp M ∞MetSp toMetSp N ∞MetSp toMetSp M × 𝑠 toMetSp N ∞MetSp
17 9 12 16 syl2anc φ toMetSp M × 𝑠 toMetSp N ∞MetSp
18 eqid Base toMetSp M × 𝑠 toMetSp N = Base toMetSp M × 𝑠 toMetSp N
19 18 1 xmsxmet2 toMetSp M × 𝑠 toMetSp N ∞MetSp P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N ∞Met Base toMetSp M × 𝑠 toMetSp N
20 17 19 syl φ P Base toMetSp M × 𝑠 toMetSp N × Base toMetSp M × 𝑠 toMetSp N ∞Met Base toMetSp M × 𝑠 toMetSp N
21 15 20 eqeltrrd φ P ∞Met Base toMetSp M × 𝑠 toMetSp N
22 7 tmsbas M ∞Met X X = Base toMetSp M
23 2 22 syl φ X = Base toMetSp M
24 10 tmsbas N ∞Met Y Y = Base toMetSp N
25 3 24 syl φ Y = Base toMetSp N
26 23 25 xpeq12d φ X × Y = Base toMetSp M × Base toMetSp N
27 4 5 6 9 12 xpsbas φ Base toMetSp M × Base toMetSp N = Base toMetSp M × 𝑠 toMetSp N
28 26 27 eqtrd φ X × Y = Base toMetSp M × 𝑠 toMetSp N
29 28 fveq2d φ ∞Met X × Y = ∞Met Base toMetSp M × 𝑠 toMetSp N
30 21 29 eleqtrrd φ P ∞Met X × Y