Metamath Proof Explorer


Theorem tmsxpsval2

Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
tmsxps.1 φ M ∞Met X
tmsxps.2 φ N ∞Met Y
tmsxpsval.a φ A X
tmsxpsval.b φ B Y
tmsxpsval.c φ C X
tmsxpsval.d φ D Y
Assertion tmsxpsval2 φ A B P C D = if A M C B N D B N D A M C

Proof

Step Hyp Ref Expression
1 tmsxps.p P = dist toMetSp M × 𝑠 toMetSp N
2 tmsxps.1 φ M ∞Met X
3 tmsxps.2 φ N ∞Met Y
4 tmsxpsval.a φ A X
5 tmsxpsval.b φ B Y
6 tmsxpsval.c φ C X
7 tmsxpsval.d φ D Y
8 1 2 3 4 5 6 7 tmsxpsval φ A B P C D = sup A M C B N D * <
9 xrltso < Or *
10 xmetcl M ∞Met X A X C X A M C *
11 2 4 6 10 syl3anc φ A M C *
12 xmetcl N ∞Met Y B Y D Y B N D *
13 3 5 7 12 syl3anc φ B N D *
14 suppr < Or * A M C * B N D * sup A M C B N D * < = if B N D < A M C A M C B N D
15 9 11 13 14 mp3an2i φ sup A M C B N D * < = if B N D < A M C A M C B N D
16 xrltnle B N D * A M C * B N D < A M C ¬ A M C B N D
17 13 11 16 syl2anc φ B N D < A M C ¬ A M C B N D
18 17 ifbid φ if B N D < A M C A M C B N D = if ¬ A M C B N D A M C B N D
19 ifnot if ¬ A M C B N D A M C B N D = if A M C B N D B N D A M C
20 18 19 eqtrdi φ if B N D < A M C A M C B N D = if A M C B N D B N D A M C
21 8 15 20 3eqtrd φ A B P C D = if A M C B N D B N D A M C