Metamath Proof Explorer


Theorem tngbas

Description: The base set of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngbas.2 B = Base G
Assertion tngbas N V B = Base T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngbas.2 B = Base G
3 df-base Base = Slot 1
4 1nn 1
5 1lt9 1 < 9
6 1 3 4 5 tnglem N V Base G = Base T
7 2 6 syl5eq N V B = Base T