Metamath Proof Explorer


Theorem tnggrpr

Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis tngngp3.t T = G toNrmGrp N
Assertion tnggrpr N V T NrmGrp G Grp

Proof

Step Hyp Ref Expression
1 tngngp3.t T = G toNrmGrp N
2 eqid Base G = Base G
3 1 2 tngbas N V Base G = Base T
4 eqidd N V Base G = Base G
5 eqid + G = + G
6 1 5 tngplusg N V + G = + T
7 6 eqcomd N V + T = + G
8 7 oveqdr N V x Base G y Base G x + T y = x + G y
9 3 4 8 grppropd N V T Grp G Grp
10 9 biimpd N V T Grp G Grp
11 ngpgrp T NrmGrp T Grp
12 10 11 impel N V T NrmGrp G Grp