Metamath Proof Explorer


Theorem tngip

Description: The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngip.2 , ˙ = 𝑖 G
Assertion tngip N V , ˙ = 𝑖 T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngip.2 , ˙ = 𝑖 G
3 ipid 𝑖 = Slot 𝑖 ndx
4 slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx
5 4 simp3i TopSet ndx 𝑖 ndx
6 5 necomi 𝑖 ndx TopSet ndx
7 slotsdnscsi dist ndx Scalar ndx dist ndx ndx dist ndx 𝑖 ndx
8 7 simp3i dist ndx 𝑖 ndx
9 8 necomi 𝑖 ndx dist ndx
10 1 3 6 9 tnglem N V 𝑖 G = 𝑖 T
11 2 10 eqtrid N V , ˙ = 𝑖 T