Metamath Proof Explorer


Theorem tngip

Description: The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngip.2 , ˙ = 𝑖 G
Assertion tngip N V , ˙ = 𝑖 T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngip.2 , ˙ = 𝑖 G
3 df-ip 𝑖 = Slot 8
4 8nn 8
5 8lt9 8 < 9
6 1 3 4 5 tnglem N V 𝑖 G = 𝑖 T
7 2 6 syl5eq N V , ˙ = 𝑖 T