Metamath Proof Explorer


Theorem tngip

Description: The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngip.2 ,˙=𝑖G
Assertion tngip NV,˙=𝑖T

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngip.2 ,˙=𝑖G
3 ipid 𝑖=Slot𝑖ndx
4 slotstnscsi TopSetndxScalarndxTopSetndxndxTopSetndx𝑖ndx
5 4 simp3i TopSetndx𝑖ndx
6 5 necomi 𝑖ndxTopSetndx
7 slotsdnscsi distndxScalarndxdistndxndxdistndx𝑖ndx
8 7 simp3i distndx𝑖ndx
9 8 necomi 𝑖ndxdistndx
10 1 3 6 9 tnglem NV𝑖G=𝑖T
11 2 10 eqtrid NV,˙=𝑖T