Metamath Proof Explorer


Theorem tnglem

Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tnglem.2 E = Slot K
tnglem.3 K
tnglem.4 K < 9
Assertion tnglem N V E G = E T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tnglem.2 E = Slot K
3 tnglem.3 K
4 tnglem.4 K < 9
5 2 3 ndxid E = Slot E ndx
6 2 3 ndxarg E ndx = K
7 3 nnrei K
8 6 7 eqeltri E ndx
9 6 4 eqbrtri E ndx < 9
10 1nn 1
11 2nn0 2 0
12 9nn0 9 0
13 9lt10 9 < 10
14 10 11 12 13 declti 9 < 12
15 9re 9
16 1nn0 1 0
17 16 11 deccl 12 0
18 17 nn0rei 12
19 8 15 18 lttri E ndx < 9 9 < 12 E ndx < 12
20 9 14 19 mp2an E ndx < 12
21 8 20 ltneii E ndx 12
22 dsndx dist ndx = 12
23 21 22 neeqtrri E ndx dist ndx
24 5 23 setsnid E G = E G sSet dist ndx N - G
25 8 9 ltneii E ndx 9
26 tsetndx TopSet ndx = 9
27 25 26 neeqtrri E ndx TopSet ndx
28 5 27 setsnid E G sSet dist ndx N - G = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
29 24 28 eqtri E G = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
30 eqid - G = - G
31 eqid N - G = N - G
32 eqid MetOpen N - G = MetOpen N - G
33 1 30 31 32 tngval G V N V T = G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
34 33 fveq2d G V N V E T = E G sSet dist ndx N - G sSet TopSet ndx MetOpen N - G
35 29 34 eqtr4id G V N V E G = E T
36 2 str0 = E
37 fvprc ¬ G V E G =
38 37 adantr ¬ G V N V E G =
39 reldmtng Rel dom toNrmGrp
40 39 ovprc1 ¬ G V G toNrmGrp N =
41 40 adantr ¬ G V N V G toNrmGrp N =
42 1 41 syl5eq ¬ G V N V T =
43 42 fveq2d ¬ G V N V E T = E
44 36 38 43 3eqtr4a ¬ G V N V E G = E T
45 35 44 pm2.61ian N V E G = E T