Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp2.t |
|
2 |
|
tngngp2.x |
|
3 |
|
tngngp2.d |
|
4 |
|
ngpgrp |
|
5 |
2
|
fvexi |
|
6 |
|
reex |
|
7 |
|
fex2 |
|
8 |
5 6 7
|
mp3an23 |
|
9 |
2
|
a1i |
|
10 |
1 2
|
tngbas |
|
11 |
|
eqid |
|
12 |
1 11
|
tngplusg |
|
13 |
12
|
oveqdr |
|
14 |
9 10 13
|
grppropd |
|
15 |
8 14
|
syl |
|
16 |
4 15
|
syl5ibr |
|
17 |
16
|
imp |
|
18 |
|
ngpms |
|
19 |
18
|
adantl |
|
20 |
|
eqid |
|
21 |
20 3
|
msmet2 |
|
22 |
19 21
|
syl |
|
23 |
|
eqid |
|
24 |
2 23
|
grpsubf |
|
25 |
17 24
|
syl |
|
26 |
|
fco |
|
27 |
25 26
|
syldan |
|
28 |
8
|
adantr |
|
29 |
1 23
|
tngds |
|
30 |
28 29
|
syl |
|
31 |
3 30
|
eqtr4id |
|
32 |
31
|
feq1d |
|
33 |
27 32
|
mpbird |
|
34 |
|
ffn |
|
35 |
|
fnresdm |
|
36 |
33 34 35
|
3syl |
|
37 |
28 10
|
syl |
|
38 |
37
|
sqxpeqd |
|
39 |
38
|
reseq2d |
|
40 |
36 39
|
eqtr3d |
|
41 |
37
|
fveq2d |
|
42 |
22 40 41
|
3eltr4d |
|
43 |
17 42
|
jca |
|
44 |
15
|
biimpa |
|
45 |
44
|
adantrr |
|
46 |
|
simprr |
|
47 |
8
|
adantr |
|
48 |
47 10
|
syl |
|
49 |
48
|
fveq2d |
|
50 |
46 49
|
eleqtrd |
|
51 |
|
metf |
|
52 |
50 51
|
syl |
|
53 |
|
ffn |
|
54 |
|
fnresdm |
|
55 |
52 53 54
|
3syl |
|
56 |
55 50
|
eqeltrd |
|
57 |
55
|
fveq2d |
|
58 |
|
simprl |
|
59 |
|
eqid |
|
60 |
1 3 59
|
tngtopn |
|
61 |
58 47 60
|
syl2anc |
|
62 |
57 61
|
eqtr2d |
|
63 |
|
eqid |
|
64 |
3
|
reseq1i |
|
65 |
63 20 64
|
isms2 |
|
66 |
56 62 65
|
sylanbrc |
|
67 |
|
simpl |
|
68 |
1 2 6
|
tngnm |
|
69 |
58 67 68
|
syl2anc |
|
70 |
9 10
|
eqtr3d |
|
71 |
70 12
|
grpsubpropd |
|
72 |
47 71
|
syl |
|
73 |
69 72
|
coeq12d |
|
74 |
47 29
|
syl |
|
75 |
73 74
|
eqtr3d |
|
76 |
|
eqimss |
|
77 |
75 76
|
syl |
|
78 |
|
eqid |
|
79 |
|
eqid |
|
80 |
|
eqid |
|
81 |
78 79 80
|
isngp |
|
82 |
45 66 77 81
|
syl3anbrc |
|
83 |
43 82
|
impbida |
|