Metamath Proof Explorer


Theorem tngngp2

Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngngp2.t T = G toNrmGrp N
tngngp2.x X = Base G
tngngp2.d D = dist T
Assertion tngngp2 N : X T NrmGrp G Grp D Met X

Proof

Step Hyp Ref Expression
1 tngngp2.t T = G toNrmGrp N
2 tngngp2.x X = Base G
3 tngngp2.d D = dist T
4 ngpgrp T NrmGrp T Grp
5 2 fvexi X V
6 reex V
7 fex2 N : X X V V N V
8 5 6 7 mp3an23 N : X N V
9 2 a1i N V X = Base G
10 1 2 tngbas N V X = Base T
11 eqid + G = + G
12 1 11 tngplusg N V + G = + T
13 12 oveqdr N V x X y X x + G y = x + T y
14 9 10 13 grppropd N V G Grp T Grp
15 8 14 syl N : X G Grp T Grp
16 4 15 imbitrrid N : X T NrmGrp G Grp
17 16 imp N : X T NrmGrp G Grp
18 ngpms T NrmGrp T MetSp
19 18 adantl N : X T NrmGrp T MetSp
20 eqid Base T = Base T
21 20 3 msmet2 T MetSp D Base T × Base T Met Base T
22 19 21 syl N : X T NrmGrp D Base T × Base T Met Base T
23 eqid - G = - G
24 2 23 grpsubf G Grp - G : X × X X
25 17 24 syl N : X T NrmGrp - G : X × X X
26 fco N : X - G : X × X X N - G : X × X
27 25 26 syldan N : X T NrmGrp N - G : X × X
28 8 adantr N : X T NrmGrp N V
29 1 23 tngds N V N - G = dist T
30 28 29 syl N : X T NrmGrp N - G = dist T
31 3 30 eqtr4id N : X T NrmGrp D = N - G
32 31 feq1d N : X T NrmGrp D : X × X N - G : X × X
33 27 32 mpbird N : X T NrmGrp D : X × X
34 ffn D : X × X D Fn X × X
35 fnresdm D Fn X × X D X × X = D
36 33 34 35 3syl N : X T NrmGrp D X × X = D
37 28 10 syl N : X T NrmGrp X = Base T
38 37 sqxpeqd N : X T NrmGrp X × X = Base T × Base T
39 38 reseq2d N : X T NrmGrp D X × X = D Base T × Base T
40 36 39 eqtr3d N : X T NrmGrp D = D Base T × Base T
41 37 fveq2d N : X T NrmGrp Met X = Met Base T
42 22 40 41 3eltr4d N : X T NrmGrp D Met X
43 17 42 jca N : X T NrmGrp G Grp D Met X
44 15 biimpa N : X G Grp T Grp
45 44 adantrr N : X G Grp D Met X T Grp
46 simprr N : X G Grp D Met X D Met X
47 8 adantr N : X G Grp D Met X N V
48 47 10 syl N : X G Grp D Met X X = Base T
49 48 fveq2d N : X G Grp D Met X Met X = Met Base T
50 46 49 eleqtrd N : X G Grp D Met X D Met Base T
51 metf D Met Base T D : Base T × Base T
52 ffn D : Base T × Base T D Fn Base T × Base T
53 fnresdm D Fn Base T × Base T D Base T × Base T = D
54 50 51 52 53 4syl N : X G Grp D Met X D Base T × Base T = D
55 54 50 eqeltrd N : X G Grp D Met X D Base T × Base T Met Base T
56 54 fveq2d N : X G Grp D Met X MetOpen D Base T × Base T = MetOpen D
57 simprl N : X G Grp D Met X G Grp
58 eqid MetOpen D = MetOpen D
59 1 3 58 tngtopn G Grp N V MetOpen D = TopOpen T
60 57 47 59 syl2anc N : X G Grp D Met X MetOpen D = TopOpen T
61 56 60 eqtr2d N : X G Grp D Met X TopOpen T = MetOpen D Base T × Base T
62 eqid TopOpen T = TopOpen T
63 3 reseq1i D Base T × Base T = dist T Base T × Base T
64 62 20 63 isms2 T MetSp D Base T × Base T Met Base T TopOpen T = MetOpen D Base T × Base T
65 55 61 64 sylanbrc N : X G Grp D Met X T MetSp
66 simpl N : X G Grp D Met X N : X
67 1 2 6 tngnm G Grp N : X N = norm T
68 57 66 67 syl2anc N : X G Grp D Met X N = norm T
69 9 10 eqtr3d N V Base G = Base T
70 69 12 grpsubpropd N V - G = - T
71 47 70 syl N : X G Grp D Met X - G = - T
72 68 71 coeq12d N : X G Grp D Met X N - G = norm T - T
73 47 29 syl N : X G Grp D Met X N - G = dist T
74 72 73 eqtr3d N : X G Grp D Met X norm T - T = dist T
75 eqimss norm T - T = dist T norm T - T dist T
76 74 75 syl N : X G Grp D Met X norm T - T dist T
77 eqid norm T = norm T
78 eqid - T = - T
79 eqid dist T = dist T
80 77 78 79 isngp T NrmGrp T Grp T MetSp norm T - T dist T
81 45 65 76 80 syl3anbrc N : X G Grp D Met X T NrmGrp
82 43 81 impbida N : X T NrmGrp G Grp D Met X