Metamath Proof Explorer


Theorem tngngpd

Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngngp.t T = G toNrmGrp N
tngngp.x X = Base G
tngngp.m - ˙ = - G
tngngp.z 0 ˙ = 0 G
tngngpd.1 φ G Grp
tngngpd.2 φ N : X
tngngpd.3 φ x X N x = 0 x = 0 ˙
tngngpd.4 φ x X y X N x - ˙ y N x + N y
Assertion tngngpd φ T NrmGrp

Proof

Step Hyp Ref Expression
1 tngngp.t T = G toNrmGrp N
2 tngngp.x X = Base G
3 tngngp.m - ˙ = - G
4 tngngp.z 0 ˙ = 0 G
5 tngngpd.1 φ G Grp
6 tngngpd.2 φ N : X
7 tngngpd.3 φ x X N x = 0 x = 0 ˙
8 tngngpd.4 φ x X y X N x - ˙ y N x + N y
9 2 fvexi X V
10 reex V
11 fex2 N : X X V V N V
12 9 10 11 mp3an23 N : X N V
13 1 3 tngds N V N - ˙ = dist T
14 6 12 13 3syl φ N - ˙ = dist T
15 2 3 4 5 6 7 8 nrmmetd φ N - ˙ Met X
16 14 15 eqeltrrd φ dist T Met X
17 eqid dist T = dist T
18 1 2 17 tngngp2 N : X T NrmGrp G Grp dist T Met X
19 6 18 syl φ T NrmGrp G Grp dist T Met X
20 5 16 19 mpbir2and φ T NrmGrp