Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
tngngpim
Next ⟩
isnrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
tngngpim
Description:
The induced metric of a normed group is a function.
(Contributed by
AV
, 19-Oct-2021)
Ref
Expression
Hypotheses
tngngpim.t
⊢
T
=
G
toNrmGrp
N
tngngpim.n
⊢
N
=
norm
⁡
G
tngngpim.x
⊢
X
=
Base
G
tngngpim.d
⊢
D
=
dist
⁡
T
Assertion
tngngpim
⊢
G
∈
NrmGrp
→
D
:
X
×
X
⟶
ℝ
Proof
Step
Hyp
Ref
Expression
1
tngngpim.t
⊢
T
=
G
toNrmGrp
N
2
tngngpim.n
⊢
N
=
norm
⁡
G
3
tngngpim.x
⊢
X
=
Base
G
4
tngngpim.d
⊢
D
=
dist
⁡
T
5
3
2
nmf
⊢
G
∈
NrmGrp
→
N
:
X
⟶
ℝ
6
2
oveq2i
⊢
G
toNrmGrp
N
=
G
toNrmGrp
norm
⁡
G
7
1
6
eqtri
⊢
T
=
G
toNrmGrp
norm
⁡
G
8
7
nrmtngnrm
⊢
G
∈
NrmGrp
→
T
∈
NrmGrp
∧
norm
⁡
T
=
norm
⁡
G
9
1
3
4
tngngp2
⊢
N
:
X
⟶
ℝ
→
T
∈
NrmGrp
↔
G
∈
Grp
∧
D
∈
Met
⁡
X
10
simpr
⊢
G
∈
Grp
∧
D
∈
Met
⁡
X
→
D
∈
Met
⁡
X
11
9
10
syl6bi
⊢
N
:
X
⟶
ℝ
→
T
∈
NrmGrp
→
D
∈
Met
⁡
X
12
11
com12
⊢
T
∈
NrmGrp
→
N
:
X
⟶
ℝ
→
D
∈
Met
⁡
X
13
12
adantr
⊢
T
∈
NrmGrp
∧
norm
⁡
T
=
norm
⁡
G
→
N
:
X
⟶
ℝ
→
D
∈
Met
⁡
X
14
8
13
syl
⊢
G
∈
NrmGrp
→
N
:
X
⟶
ℝ
→
D
∈
Met
⁡
X
15
metf
⊢
D
∈
Met
⁡
X
→
D
:
X
×
X
⟶
ℝ
16
14
15
syl6
⊢
G
∈
NrmGrp
→
N
:
X
⟶
ℝ
→
D
:
X
×
X
⟶
ℝ
17
5
16
mpd
⊢
G
∈
NrmGrp
→
D
:
X
×
X
⟶
ℝ