Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tngnrg.t | |
|
tngnrg.a | |
||
Assertion | tngnrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngnrg.t | |
|
2 | tngnrg.a | |
|
3 | 2 | abvrcl | |
4 | ringgrp | |
|
5 | 3 4 | syl | |
6 | eqid | |
|
7 | 1 6 | tngds | |
8 | eqid | |
|
9 | 8 2 6 | abvmet | |
10 | 7 9 | eqeltrrd | |
11 | 2 8 | abvf | |
12 | eqid | |
|
13 | 1 8 12 | tngngp2 | |
14 | 11 13 | syl | |
15 | 5 10 14 | mpbir2and | |
16 | reex | |
|
17 | 1 8 16 | tngnm | |
18 | 5 11 17 | syl2anc | |
19 | eqidd | |
|
20 | 1 8 | tngbas | |
21 | eqid | |
|
22 | 1 21 | tngplusg | |
23 | 22 | oveqdr | |
24 | eqid | |
|
25 | 1 24 | tngmulr | |
26 | 25 | oveqdr | |
27 | 19 20 23 26 | abvpropd | |
28 | 2 27 | eqtrid | |
29 | 18 28 | eleq12d | |
30 | 29 | ibi | |
31 | eqid | |
|
32 | eqid | |
|
33 | 31 32 | isnrg | |
34 | 15 30 33 | sylanbrc | |