Metamath Proof Explorer


Theorem tngnrg

Description: Given any absolute value over a ring, augmenting the ring with the absolute value produces a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngnrg.t T=RtoNrmGrpF
tngnrg.a A=AbsValR
Assertion tngnrg FATNrmRing

Proof

Step Hyp Ref Expression
1 tngnrg.t T=RtoNrmGrpF
2 tngnrg.a A=AbsValR
3 2 abvrcl FARRing
4 ringgrp RRingRGrp
5 3 4 syl FARGrp
6 eqid -R=-R
7 1 6 tngds FAF-R=distT
8 eqid BaseR=BaseR
9 8 2 6 abvmet FAF-RMetBaseR
10 7 9 eqeltrrd FAdistTMetBaseR
11 2 8 abvf FAF:BaseR
12 eqid distT=distT
13 1 8 12 tngngp2 F:BaseRTNrmGrpRGrpdistTMetBaseR
14 11 13 syl FATNrmGrpRGrpdistTMetBaseR
15 5 10 14 mpbir2and FATNrmGrp
16 reex V
17 1 8 16 tngnm RGrpF:BaseRF=normT
18 5 11 17 syl2anc FAF=normT
19 eqidd FABaseR=BaseR
20 1 8 tngbas FABaseR=BaseT
21 eqid +R=+R
22 1 21 tngplusg FA+R=+T
23 22 oveqdr FAxBaseRyBaseRx+Ry=x+Ty
24 eqid R=R
25 1 24 tngmulr FAR=T
26 25 oveqdr FAxBaseRyBaseRxRy=xTy
27 19 20 23 26 abvpropd FAAbsValR=AbsValT
28 2 27 eqtrid FAA=AbsValT
29 18 28 eleq12d FAFAnormTAbsValT
30 29 ibi FAnormTAbsValT
31 eqid normT=normT
32 eqid AbsValT=AbsValT
33 31 32 isnrg TNrmRingTNrmGrpnormTAbsValT
34 15 30 33 sylanbrc FATNrmRing