Metamath Proof Explorer


Theorem tngplusg

Description: The group addition of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t T = G toNrmGrp N
tngplusg.2 + ˙ = + G
Assertion tngplusg N V + ˙ = + T

Proof

Step Hyp Ref Expression
1 tngbas.t T = G toNrmGrp N
2 tngplusg.2 + ˙ = + G
3 df-plusg + 𝑔 = Slot 2
4 2nn 2
5 2lt9 2 < 9
6 1 3 4 5 tnglem N V + G = + T
7 2 6 syl5eq N V + ˙ = + T