Metamath Proof Explorer


Theorem tngvsca

Description: The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t T=GtoNrmGrpN
tngvsca.2 ·˙=G
Assertion tngvsca NV·˙=T

Proof

Step Hyp Ref Expression
1 tngbas.t T=GtoNrmGrpN
2 tngvsca.2 ·˙=G
3 vscaid 𝑠=Slotndx
4 slotstnscsi TopSetndxScalarndxTopSetndxndxTopSetndx𝑖ndx
5 4 simp2i TopSetndxndx
6 5 necomi ndxTopSetndx
7 slotsdnscsi distndxScalarndxdistndxndxdistndx𝑖ndx
8 7 simp2i distndxndx
9 8 necomi ndxdistndx
10 1 3 6 9 tnglem NVG=T
11 2 10 eqtrid NV·˙=T