Metamath Proof Explorer
Table of Contents - 21.3.9. Algebra
- Monoids
- cmn4d
- cmn246135
- cmn145236
- submcld
- Monoids Homomorphisms
- abliso
- lmhmghmd
- mhmimasplusg
- lmhmimasvsca
- Finitely supported group sums - misc additions
- gsumsubg
- gsumsra
- gsummpt2co
- gsummpt2d
- lmodvslmhm
- gsumvsmul1
- gsummptres
- gsummptres2
- gsumzresunsn
- gsumpart
- gsumhashmul
- xrge0tsmsd
- xrge0tsmsbi
- xrge0tsmseq
- Centralizers and centers - misc additions
- cntzun
- cntzsnid
- cntrcrng
- Totally ordered monoids and groups
- comnd
- cogrp
- df-omnd
- df-ogrp
- isomnd
- isogrp
- ogrpgrp
- omndmnd
- omndtos
- omndadd
- omndaddr
- omndadd2d
- omndadd2rd
- submomnd
- xrge0omnd
- omndmul2
- omndmul3
- omndmul
- ogrpinv0le
- ogrpsub
- ogrpaddlt
- ogrpaddltbi
- ogrpaddltrd
- ogrpaddltrbid
- ogrpsublt
- ogrpinv0lt
- ogrpinvlt
- gsumle
- The symmetric group
- symgfcoeu
- symgcom
- symgcom2
- symgcntz
- odpmco
- symgsubg
- pmtrprfv2
- pmtrcnel
- pmtrcnel2
- pmtrcnelor
- Transpositions
- pmtridf1o
- pmtridfv1
- pmtridfv2
- Permutation Signs
- psgnid
- psgndmfi
- pmtrto1cl
- psgnfzto1stlem
- fzto1stfv1
- fzto1st1
- fzto1st
- fzto1stinvn
- psgnfzto1st
- Permutation cycles
- ctocyc
- df-tocyc
- tocycval
- tocycfv
- tocycfvres1
- tocycfvres2
- cycpmfvlem
- cycpmfv1
- cycpmfv2
- cycpmfv3
- cycpmcl
- tocycf
- tocyc01
- cycpm2tr
- cycpm2cl
- cyc2fv1
- cyc2fv2
- trsp2cyc
- cycpmco2f1
- cycpmco2rn
- cycpmco2lem1
- cycpmco2lem2
- cycpmco2lem3
- cycpmco2lem4
- cycpmco2lem5
- cycpmco2lem6
- cycpmco2lem7
- cycpmco2
- cyc2fvx
- cycpm3cl
- cycpm3cl2
- cyc3fv1
- cyc3fv2
- cyc3fv3
- cyc3co2
- cycpmconjvlem
- cycpmconjv
- cycpmrn
- tocyccntz
- The Alternating Group
- evpmval
- cnmsgn0g
- evpmsubg
- evpmid
- altgnsg
- cyc3evpm
- cyc3genpmlem
- cyc3genpm
- cycpmgcl
- cycpmconjslem1
- cycpmconjslem2
- cycpmconjs
- cyc3conja
- Signum in an ordered monoid
- csgns
- df-sgns
- sgnsv
- sgnsval
- sgnsf
- The Archimedean property for generic ordered algebraic structures
- cinftm
- carchi
- df-inftm
- df-archi
- inftmrel
- isinftm
- isarchi
- pnfinf
- xrnarchi
- isarchi2
- submarchi
- isarchi3
- archirng
- archirngz
- archiexdiv
- archiabllem1a
- archiabllem1b
- archiabllem1
- archiabllem2a
- archiabllem2c
- archiabllem2b
- archiabllem2
- archiabl
- Semiring left modules
- cslmd
- df-slmd
- isslmd
- slmdlema
- lmodslmd
- slmdcmn
- slmdmnd
- slmdsrg
- slmdbn0
- slmdacl
- slmdmcl
- slmdsn0
- slmdvacl
- slmdass
- slmdvscl
- slmdvsdi
- slmdvsdir
- slmdvsass
- slmd0cl
- slmd1cl
- slmdvs1
- slmd0vcl
- slmd0vlid
- slmd0vrid
- slmd0vs
- slmdvs0
- gsumvsca1
- gsumvsca2
- Simple groups
- prmsimpcyc
- Rings - misc additions
- cringmul32d
- ringdid
- ringdird
- urpropd
- frobrhm
- ress1r
- ringinvval
- dvrcan5
- subrgchr
- rmfsupp2
- unitnz
- The zero ring
- irrednzr
- 0ringsubrg
- 0ringcring
- Localization of rings
- cerl
- crloc
- df-erl
- df-rloc
- reldmrloc
- erlval
- rlocval
- erlcl1
- erlcl2
- erldi
- erlbrd
- erlbr2d
- erler
- elrlocbasi
- rlocbas
- rlocaddval
- rlocmulval
- rloccring
- rloc0g
- rloc1r
- rlocf1
- Integral Domains
- domnlcan
- idomrcan
- 1rrg
- rrgnz
- isdomn6
- rrgsubm
- subrdom
- subridom
- subrfld
- Euclidean Domains
- ceuf
- df-euf
- eufndx
- eufid
- cedom
- df-edom
- Division Rings
- ringinveu
- isdrng4
- rndrhmcl
- Subfields
- sdrgdvcl
- sdrginvcl
- primefldchr
- Field of fractions
- cfrac
- df-frac
- fracval
- fracbas
- fracerl
- fracf1
- fracfld
- idomsubr
- Field extensions generated by a set
- cfldgen
- df-fldgen
- fldgenval
- fldgenssid
- fldgensdrg
- fldgenssv
- fldgenss
- fldgenidfld
- fldgenssp
- fldgenid
- fldgenfld
- primefldgen1
- 1fldgenq
- Totally ordered rings and fields
- corng
- cofld
- df-orng
- df-ofld
- isorng
- orngring
- orngogrp
- isofld
- orngmul
- orngsqr
- ornglmulle
- orngrmulle
- ornglmullt
- orngrmullt
- orngmullt
- ofldfld
- ofldtos
- orng0le1
- ofldlt1
- ofldchr
- suborng
- subofld
- isarchiofld
- Ring homomorphisms - misc additions
- rhmdvd
- kerunit
- Scalar restriction operation
- cresv
- df-resv
- reldmresv
- resvval
- resvid2
- resvval2
- resvsca
- resvlem
- resvlemOLD
- resvbas
- resvbasOLD
- resvplusg
- resvplusgOLD
- resvvsca
- resvvscaOLD
- resvmulr
- resvmulrOLD
- resv0g
- resv1r
- resvcmn
- The commutative ring of gaussian integers
- gzcrng
- The archimedean ordered field of real numbers
- reofld
- nn0omnd
- rearchi
- nn0archi
- xrge0slmod
- The quotient map and quotient modules
- qusker
- eqgvscpbl
- qusvscpbl
- qusvsval
- imaslmod
- imasmhm
- imasghm
- imasrhm
- imaslmhm
- quslmod
- quslmhm
- quslvec
- ecxpid
- qsxpid
- qusxpid
- qustriv
- qustrivr
- The ring of integers modulo ` N `
- znfermltl
- Independent sets and families
- islinds5
- ellspds
- 0ellsp
- 0nellinds
- rspsnel
- rspsnid
- elrsp
- ellpi
- rspidlid
- pidlnz
- dvdsruassoi
- dvdsruasso
- dvdsruasso2
- dvdsrspss
- rspsnasso
- lbslsp
- lindssn
- lindflbs
- islbs5
- linds2eq
- lindfpropd
- lindspropd
- Subgroup sum / Sumset / Minkowski sum
- elgrplsmsn
- lsmsnorb
- lsmsnorb2
- elringlsm
- elringlsmd
- ringlsmss
- ringlsmss1
- ringlsmss2
- lsmsnpridl
- lsmsnidl
- lsmidllsp
- lsmidl
- lsmssass
- grplsm0l
- grplsmid
- The quotient map
- qusmul
- quslsm
- qusbas2
- qus0g
- qusima
- qusrn
- nsgqus0
- nsgmgclem
- nsgmgc
- nsgqusf1olem1
- nsgqusf1olem2
- nsgqusf1olem3
- nsgqusf1o
- lmhmqusker
- lmicqusker
- ghmqusnsglem1
- ghmqusnsglem2
- ghmqusnsg
- Ideals
- intlidl
- rhmpreimaidl
- kerlidl
- lidlnsg
- 0ringidl
- pidlnzb
- lidlunitel
- unitpidl1
- rhmquskerlem
- rhmqusker
- ricqusker
- rhmqusnsg
- elrspunidl
- elrspunsn
- lidlincl
- idlinsubrg
- rhmimaidl
- drngidl
- drngidlhash
- Prime Ideals
- cprmidl
- df-prmidl
- prmidlval
- isprmidl
- prmidlnr
- prmidl
- prmidl2
- idlmulssprm
- pridln1
- prmidlidl
- prmidlssidl
- cringm4
- isprmidlc
- prmidlc
- 0ringprmidl
- prmidl0
- rhmpreimaprmidl
- qsidomlem1
- qsidomlem2
- qsidom
- qsnzr
- Maximal Ideals
- cmxidl
- df-mxidl
- mxidlval
- ismxidl
- mxidlidl
- mxidlnr
- mxidlmax
- mxidln1
- mxidlnzr
- mxidlmaxv
- crngmxidl
- mxidlprm
- mxidlirredi
- mxidlirred
- ssmxidllem
- ssmxidl
- drnglidl1ne0
- drng0mxidl
- drngmxidl
- krull
- mxidlnzrb
- opprabs
- oppreqg
- opprnsg
- opprlidlabs
- oppr2idl
- opprmxidlabs
- opprqusbas
- opprqusplusg
- opprqus0g
- opprqusmulr
- opprqus1r
- opprqusdrng
- qsdrngilem
- qsdrngi
- qsdrnglem2
- qsdrng
- qsfld
- mxidlprmALT
- The semiring of ideals of a ring
- cidlsrg
- df-idlsrg
- idlsrgstr
- idlsrgval
- idlsrgbas
- idlsrgplusg
- idlsrg0g
- idlsrgmulr
- idlsrgtset
- idlsrgmulrval
- idlsrgmulrcl
- idlsrgmulrss1
- idlsrgmulrss2
- idlsrgmulrssin
- idlsrgmnd
- idlsrgcmnd
- Prime Elements
- rprmval
- isrprm
- rprmcl
- rprmdvds
- rprmnz
- rprmnunit
- rsprprmprmidl
- rsprprmprmidlb
- rprmndvdsr1
- rprmasso
- rprmasso2
- rprmirredlem
- rprmirred
- rprmirredb
- rprmdvdspow
- rprmdvdsprod
- Unique factorization domains
- cufd
- df-ufd
- isufd
- isufd2
- ufdcringd
- 0ringufd
- The ring of integers
- zringidom
- zringpid
- dfprm3
- zringfrac
- Univariate Polynomials
- 0ringmon1p
- fply1
- ply1lvec
- evls1fn
- evls1dm
- evls1fvf
- ressdeg1
- ressply10g
- ressply1mon1p
- ressply1invg
- ressply1sub
- evls1subd
- ply1ascl1
- deg1le0eq0
- ply1asclunit
- ply1unit
- m1pmeq
- ply1fermltl
- coe1mon
- ply1moneq
- ply1degltel
- ply1degleel
- ply1degltlss
- gsummoncoe1fzo
- ply1gsumz
- deg1addlt
- ig1pnunit
- ig1pmindeg
- Polynomial quotient and polynomial remainder
- q1pdir
- q1pvsca
- r1pvsca
- r1p0
- r1pcyc
- r1padd1
- r1pid2
- r1plmhm
- r1pquslmic
- The subring algebra
- sra1r
- sradrng
- srasubrg
- sralvec
- srafldlvec
- resssra
- lsssra
- Division Ring Extensions
- drgext0g
- drgextvsca
- drgext0gsca
- drgextsubrg
- drgextlsp
- drgextgsum
- Vector Spaces
- lvecdimfi
- Vector Space Dimension
- cldim
- df-dim
- dimval
- dimvalfi
- dimcl
- lmimdim
- lmicdim
- lvecdim0i
- lvecdim0
- lssdimle
- dimpropd
- rlmdim
- rgmoddimOLD
- frlmdim
- tnglvec
- tngdim
- rrxdim
- matdim
- lbslsat
- lsatdim
- drngdimgt0
- lmhmlvec2
- kerlmhm
- imlmhm
- ply1degltdimlem
- ply1degltdim
- lindsunlem
- lindsun
- lbsdiflsp0
- dimkerim
- qusdimsum
- fedgmullem1
- fedgmullem2
- fedgmul