Metamath Proof Explorer


Theorem topcld

Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of Munkres p. 93. (Contributed by NM, 3-Oct-2006)

Ref Expression
Hypothesis iscld.1 X = J
Assertion topcld J Top X Clsd J

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 difid X X =
3 0opn J Top J
4 2 3 eqeltrid J Top X X J
5 ssid X X
6 4 5 jctil J Top X X X X J
7 1 iscld J Top X Clsd J X X X X J
8 6 7 mpbird J Top X Clsd J