Metamath Proof Explorer


Theorem topdlat

Description: A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis topdlat.i I = toInc J
Assertion topdlat J Top I DLat

Proof

Step Hyp Ref Expression
1 topdlat.i I = toInc J
2 1 topclat J Top I CLat
3 clatl I CLat I Lat
4 2 3 syl J Top I Lat
5 simpl J Top x Base I y Base I z Base I J Top
6 simpr2 J Top x Base I y Base I z Base I y Base I
7 1 ipobas J Top J = Base I
8 5 7 syl J Top x Base I y Base I z Base I J = Base I
9 6 8 eleqtrrd J Top x Base I y Base I z Base I y J
10 simpr3 J Top x Base I y Base I z Base I z Base I
11 10 8 eleqtrrd J Top x Base I y Base I z Base I z J
12 eqid join I = join I
13 1 5 9 11 12 toplatjoin J Top x Base I y Base I z Base I y join I z = y z
14 13 oveq2d J Top x Base I y Base I z Base I x meet I y join I z = x meet I y z
15 simpr1 J Top x Base I y Base I z Base I x Base I
16 15 8 eleqtrrd J Top x Base I y Base I z Base I x J
17 unopn J Top y J z J y z J
18 5 9 11 17 syl3anc J Top x Base I y Base I z Base I y z J
19 eqid meet I = meet I
20 1 5 16 18 19 toplatmeet J Top x Base I y Base I z Base I x meet I y z = x y z
21 inopn J Top x J y J x y J
22 5 16 9 21 syl3anc J Top x Base I y Base I z Base I x y J
23 inopn J Top x J z J x z J
24 5 16 11 23 syl3anc J Top x Base I y Base I z Base I x z J
25 1 5 22 24 12 toplatjoin J Top x Base I y Base I z Base I x y join I x z = x y x z
26 1 5 16 9 19 toplatmeet J Top x Base I y Base I z Base I x meet I y = x y
27 1 5 16 11 19 toplatmeet J Top x Base I y Base I z Base I x meet I z = x z
28 26 27 oveq12d J Top x Base I y Base I z Base I x meet I y join I x meet I z = x y join I x z
29 indi x y z = x y x z
30 29 a1i J Top x Base I y Base I z Base I x y z = x y x z
31 25 28 30 3eqtr4rd J Top x Base I y Base I z Base I x y z = x meet I y join I x meet I z
32 14 20 31 3eqtrd J Top x Base I y Base I z Base I x meet I y join I z = x meet I y join I x meet I z
33 32 ralrimivvva J Top x Base I y Base I z Base I x meet I y join I z = x meet I y join I x meet I z
34 eqid Base I = Base I
35 34 12 19 isdlat I DLat I Lat x Base I y Base I z Base I x meet I y join I z = x meet I y join I x meet I z
36 4 33 35 sylanbrc J Top I DLat