Metamath Proof Explorer


Theorem topgrpbas

Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
Assertion topgrpbas B X B = Base W

Proof

Step Hyp Ref Expression
1 topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
2 1 topgrpstr W Struct 1 9
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B + ndx + ˙ TopSet ndx J
5 4 1 sseqtrri Base ndx B W
6 2 3 5 strfv B X B = Base W