Metamath Proof Explorer


Theorem topgrpplusg

Description: The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
Assertion topgrpplusg + ˙ X + ˙ = + W

Proof

Step Hyp Ref Expression
1 topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
2 1 topgrpstr W Struct 1 9
3 plusgid + 𝑔 = Slot + ndx
4 snsstp2 + ndx + ˙ Base ndx B + ndx + ˙ TopSet ndx J
5 4 1 sseqtrri + ndx + ˙ W
6 2 3 5 strfv + ˙ X + ˙ = + W