Metamath Proof Explorer


Theorem topgrpstr

Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
Assertion topgrpstr W Struct 1 9

Proof

Step Hyp Ref Expression
1 topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
2 1nn 1
3 basendx Base ndx = 1
4 1lt2 1 < 2
5 2nn 2
6 plusgndx + ndx = 2
7 2lt9 2 < 9
8 9nn 9
9 tsetndx TopSet ndx = 9
10 2 3 4 5 6 7 8 9 strle3 Base ndx B + ndx + ˙ TopSet ndx J Struct 1 9
11 1 10 eqbrtri W Struct 1 9