Metamath Proof Explorer


Theorem topgrptset

Description: The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
Assertion topgrptset J X J = TopSet W

Proof

Step Hyp Ref Expression
1 topgrpfn.w W = Base ndx B + ndx + ˙ TopSet ndx J
2 1 topgrpstr W Struct 1 9
3 tsetid TopSet = Slot TopSet ndx
4 snsstp3 TopSet ndx J Base ndx B + ndx + ˙ TopSet ndx J
5 4 1 sseqtrri TopSet ndx J W
6 2 3 5 strfv J X J = TopSet W