Metamath Proof Explorer


Theorem toplatglb

Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i I = toInc J
toplatlub.j φ J Top
toplatlub.s φ S J
toplatglb.g G = glb I
toplatglb.e φ S
Assertion toplatglb φ G S = int J S

Proof

Step Hyp Ref Expression
1 topclat.i I = toInc J
2 toplatlub.j φ J Top
3 toplatlub.s φ S J
4 toplatglb.g G = glb I
5 toplatglb.e φ S
6 4 a1i φ G = glb I
7 intssuni S S S
8 5 7 syl φ S S
9 3 unissd φ S J
10 8 9 sstrd φ S J
11 eqid J = J
12 11 ntrval J Top S J int J S = J 𝒫 S
13 2 10 12 syl2anc φ int J S = J 𝒫 S
14 2 uniexd φ J V
15 14 10 ssexd φ S V
16 inpw S V J 𝒫 S = x J | x S
17 16 unieqd S V J 𝒫 S = x J | x S
18 15 17 syl φ J 𝒫 S = x J | x S
19 13 18 eqtrd φ int J S = x J | x S
20 11 ntropn J Top S J int J S J
21 2 10 20 syl2anc φ int J S J
22 1 2 3 6 19 21 ipoglb φ G S = int J S