Metamath Proof Explorer


Theorem toplatglb0

Description: The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i I = toInc J
toplatlub.j φ J Top
toplatglb0.g G = glb I
Assertion toplatglb0 φ G = J

Proof

Step Hyp Ref Expression
1 topclat.i I = toInc J
2 toplatlub.j φ J Top
3 toplatglb0.g G = glb I
4 3 a1i φ G = glb I
5 eqid J = J
6 5 topopn J Top J J
7 2 6 syl φ J J
8 1 4 7 ipoglb0 φ G = J