Metamath Proof Explorer


Theorem toplatjoin

Description: Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses toplatmeet.i I = toInc J
toplatmeet.j φ J Top
toplatmeet.a φ A J
toplatmeet.b φ B J
toplatjoin.j ˙ = join I
Assertion toplatjoin φ A ˙ B = A B

Proof

Step Hyp Ref Expression
1 toplatmeet.i I = toInc J
2 toplatmeet.j φ J Top
3 toplatmeet.a φ A J
4 toplatmeet.b φ B J
5 toplatjoin.j ˙ = join I
6 eqid lub I = lub I
7 1 ipopos I Poset
8 7 a1i φ I Poset
9 6 5 8 3 4 joinval φ A ˙ B = lub I A B
10 3 4 prssd φ A B J
11 6 a1i φ lub I = lub I
12 uniprg A J B J A B = A B
13 3 4 12 syl2anc φ A B = A B
14 unopn J Top A J B J A B J
15 2 3 4 14 syl3anc φ A B J
16 13 15 eqeltrd φ A B J
17 intmin A B J x J | A B x = A B
18 16 17 syl φ x J | A B x = A B
19 18 13 eqtr2d φ A B = x J | A B x
20 1 2 10 11 19 15 ipolub φ lub I A B = A B
21 9 20 eqtrd φ A ˙ B = A B