Metamath Proof Explorer


Theorem toplatlub

Description: Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i I = toInc J
toplatlub.j φ J Top
toplatlub.s φ S J
toplatlub.u U = lub I
Assertion toplatlub φ U S = S

Proof

Step Hyp Ref Expression
1 topclat.i I = toInc J
2 toplatlub.j φ J Top
3 toplatlub.s φ S J
4 toplatlub.u U = lub I
5 4 a1i φ U = lub I
6 uniopn J Top S J S J
7 2 3 6 syl2anc φ S J
8 intmin S J x J | S x = S
9 8 eqcomd S J S = x J | S x
10 7 9 syl φ S = x J | S x
11 1 2 3 5 10 7 ipolub φ U S = S