Metamath Proof Explorer


Theorem toplatmeet

Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses toplatmeet.i I = toInc J
toplatmeet.j φ J Top
toplatmeet.a φ A J
toplatmeet.b φ B J
toplatmeet.m ˙ = meet I
Assertion toplatmeet φ A ˙ B = A B

Proof

Step Hyp Ref Expression
1 toplatmeet.i I = toInc J
2 toplatmeet.j φ J Top
3 toplatmeet.a φ A J
4 toplatmeet.b φ B J
5 toplatmeet.m ˙ = meet I
6 eqid glb I = glb I
7 1 ipopos I Poset
8 7 a1i φ I Poset
9 6 5 8 3 4 meetval φ A ˙ B = glb I A B
10 3 4 prssd φ A B J
11 6 a1i φ glb I = glb I
12 intprg A J B J A B = A B
13 3 4 12 syl2anc φ A B = A B
14 inopn J Top A J B J A B J
15 2 3 4 14 syl3anc φ A B J
16 13 15 eqeltrd φ A B J
17 unimax A B J x J | x A B = A B
18 16 17 syl φ x J | x A B = A B
19 18 13 eqtr2d φ A B = x J | x A B
20 1 2 10 11 19 15 ipoglb φ glb I A B = A B
21 9 20 eqtrd φ A ˙ B = A B