Metamath Proof Explorer


Theorem toplly

Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion toplly Locally Top = Top

Proof

Step Hyp Ref Expression
1 llytop j Locally Top j Top
2 1 ssriv Locally Top Top
3 resttop j Top x j j 𝑡 x Top
4 3 adantl j Top x j j 𝑡 x Top
5 ssidd Top Top
6 4 5 restlly Top Locally Top
7 6 mptru Top Locally Top
8 2 7 eqssi Locally Top = Top