Metamath Proof Explorer


Theorem topnex

Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion topnex Top V

Proof

Step Hyp Ref Expression
1 pwnex y | x y = 𝒫 x V
2 1 neli ¬ y | x y = 𝒫 x V
3 distop x V 𝒫 x Top
4 3 elv 𝒫 x Top
5 eleq1 y = 𝒫 x y Top 𝒫 x Top
6 4 5 mpbiri y = 𝒫 x y Top
7 6 exlimiv x y = 𝒫 x y Top
8 7 abssi y | x y = 𝒫 x Top
9 ssexg y | x y = 𝒫 x Top Top V y | x y = 𝒫 x V
10 8 9 mpan Top V y | x y = 𝒫 x V
11 2 10 mto ¬ Top V
12 11 nelir Top V