Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
topnval
Next ⟩
topnid
Metamath Proof Explorer
Ascii
Unicode
Theorem
topnval
Description:
Value of the topology extractor function.
(Contributed by
Mario Carneiro
, 13-Aug-2015)
Ref
Expression
Hypotheses
topnval.1
⊢
B
=
Base
W
topnval.2
⊢
J
=
TopSet
⁡
W
Assertion
topnval
⊢
J
↾
𝑡
B
=
TopOpen
⁡
W
Proof
Step
Hyp
Ref
Expression
1
topnval.1
⊢
B
=
Base
W
2
topnval.2
⊢
J
=
TopSet
⁡
W
3
fveq2
⊢
w
=
W
→
TopSet
⁡
w
=
TopSet
⁡
W
4
3
2
eqtr4di
⊢
w
=
W
→
TopSet
⁡
w
=
J
5
fveq2
⊢
w
=
W
→
Base
w
=
Base
W
6
5
1
eqtr4di
⊢
w
=
W
→
Base
w
=
B
7
4
6
oveq12d
⊢
w
=
W
→
TopSet
⁡
w
↾
𝑡
Base
w
=
J
↾
𝑡
B
8
df-topn
⊢
TopOpen
=
w
∈
V
⟼
TopSet
⁡
w
↾
𝑡
Base
w
9
ovex
⊢
J
↾
𝑡
B
∈
V
10
7
8
9
fvmpt
⊢
W
∈
V
→
TopOpen
⁡
W
=
J
↾
𝑡
B
11
10
eqcomd
⊢
W
∈
V
→
J
↾
𝑡
B
=
TopOpen
⁡
W
12
0rest
⊢
∅
↾
𝑡
B
=
∅
13
fvprc
⊢
¬
W
∈
V
→
TopSet
⁡
W
=
∅
14
2
13
eqtrid
⊢
¬
W
∈
V
→
J
=
∅
15
14
oveq1d
⊢
¬
W
∈
V
→
J
↾
𝑡
B
=
∅
↾
𝑡
B
16
fvprc
⊢
¬
W
∈
V
→
TopOpen
⁡
W
=
∅
17
12
15
16
3eqtr4a
⊢
¬
W
∈
V
→
J
↾
𝑡
B
=
TopOpen
⁡
W
18
11
17
pm2.61i
⊢
J
↾
𝑡
B
=
TopOpen
⁡
W