Metamath Proof Explorer


Theorem toponcom

Description: If K is a topology on the base set of topology J , then J is a topology on the base of K . (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion toponcom J Top K TopOn J J TopOn K

Proof

Step Hyp Ref Expression
1 toponuni K TopOn J J = K
2 1 eqcomd K TopOn J K = J
3 2 anim2i J Top K TopOn J J Top K = J
4 istopon J TopOn K J Top K = J
5 3 4 sylibr J Top K TopOn J J TopOn K