Database
BASIC TOPOLOGY
Topology
Topological spaces
Topologies on sets
toponcomb
Next ⟩
topgele
Metamath Proof Explorer
Ascii
Unicode
Theorem
toponcomb
Description:
Biconditional form of
toponcom
.
(Contributed by
BJ
, 5-Dec-2021)
Ref
Expression
Assertion
toponcomb
⊢
J
∈
Top
∧
K
∈
Top
→
J
∈
TopOn
⁡
⋃
K
↔
K
∈
TopOn
⁡
⋃
J
Proof
Step
Hyp
Ref
Expression
1
toponcom
⊢
K
∈
Top
∧
J
∈
TopOn
⁡
⋃
K
→
K
∈
TopOn
⁡
⋃
J
2
1
ex
⊢
K
∈
Top
→
J
∈
TopOn
⁡
⋃
K
→
K
∈
TopOn
⁡
⋃
J
3
2
adantl
⊢
J
∈
Top
∧
K
∈
Top
→
J
∈
TopOn
⁡
⋃
K
→
K
∈
TopOn
⁡
⋃
J
4
toponcom
⊢
J
∈
Top
∧
K
∈
TopOn
⁡
⋃
J
→
J
∈
TopOn
⁡
⋃
K
5
4
ex
⊢
J
∈
Top
→
K
∈
TopOn
⁡
⋃
J
→
J
∈
TopOn
⁡
⋃
K
6
5
adantr
⊢
J
∈
Top
∧
K
∈
Top
→
K
∈
TopOn
⁡
⋃
J
→
J
∈
TopOn
⁡
⋃
K
7
3
6
impbid
⊢
J
∈
Top
∧
K
∈
Top
→
J
∈
TopOn
⁡
⋃
K
↔
K
∈
TopOn
⁡
⋃
J