Metamath Proof Explorer


Theorem toponcomb

Description: Biconditional form of toponcom . (Contributed by BJ, 5-Dec-2021)

Ref Expression
Assertion toponcomb J Top K Top J TopOn K K TopOn J

Proof

Step Hyp Ref Expression
1 toponcom K Top J TopOn K K TopOn J
2 1 ex K Top J TopOn K K TopOn J
3 2 adantl J Top K Top J TopOn K K TopOn J
4 toponcom J Top K TopOn J J TopOn K
5 4 ex J Top K TopOn J J TopOn K
6 5 adantr J Top K Top K TopOn J J TopOn K
7 3 6 impbid J Top K Top J TopOn K K TopOn J