Step |
Hyp |
Ref |
Expression |
1 |
|
toponsspwpw |
|
2 |
1
|
a1i |
|
3 |
|
distopon |
|
4 |
|
simpl |
|
5 |
4
|
sselda |
|
6 |
5
|
adantrl |
|
7 |
|
topontop |
|
8 |
6 7
|
syl |
|
9 |
|
simpl |
|
10 |
|
intss1 |
|
11 |
10
|
adantl |
|
12 |
9 11
|
sstrd |
|
13 |
12
|
adantl |
|
14 |
|
uniopn |
|
15 |
8 13 14
|
syl2anc |
|
16 |
15
|
expr |
|
17 |
16
|
ralrimiv |
|
18 |
|
vuniex |
|
19 |
18
|
elint2 |
|
20 |
17 19
|
sylibr |
|
21 |
20
|
ex |
|
22 |
21
|
alrimiv |
|
23 |
|
simpll |
|
24 |
23
|
sselda |
|
25 |
|
topontop |
|
26 |
24 25
|
syl |
|
27 |
|
intss1 |
|
28 |
27
|
adantl |
|
29 |
|
simplrl |
|
30 |
28 29
|
sseldd |
|
31 |
|
simplrr |
|
32 |
28 31
|
sseldd |
|
33 |
|
inopn |
|
34 |
26 30 32 33
|
syl3anc |
|
35 |
34
|
ralrimiva |
|
36 |
|
vex |
|
37 |
36
|
inex1 |
|
38 |
37
|
elint2 |
|
39 |
35 38
|
sylibr |
|
40 |
39
|
ralrimivva |
|
41 |
|
intex |
|
42 |
41
|
biimpi |
|
43 |
42
|
adantl |
|
44 |
|
istopg |
|
45 |
43 44
|
syl |
|
46 |
22 40 45
|
mpbir2and |
|
47 |
46
|
3adant1 |
|
48 |
|
n0 |
|
49 |
48
|
biimpi |
|
50 |
49
|
ad2antlr |
|
51 |
10
|
sselda |
|
52 |
51
|
ancoms |
|
53 |
|
elssuni |
|
54 |
52 53
|
syl |
|
55 |
54
|
adantl |
|
56 |
5
|
adantrl |
|
57 |
|
toponuni |
|
58 |
56 57
|
syl |
|
59 |
55 58
|
sseqtrrd |
|
60 |
59
|
expr |
|
61 |
60
|
exlimdv |
|
62 |
50 61
|
mpd |
|
63 |
62
|
ralrimiva |
|
64 |
|
unissb |
|
65 |
63 64
|
sylibr |
|
66 |
65
|
3adant1 |
|
67 |
4
|
sselda |
|
68 |
|
toponuni |
|
69 |
67 68
|
syl |
|
70 |
|
topontop |
|
71 |
|
eqid |
|
72 |
71
|
topopn |
|
73 |
67 70 72
|
3syl |
|
74 |
69 73
|
eqeltrd |
|
75 |
74
|
ralrimiva |
|
76 |
75
|
3adant1 |
|
77 |
|
elintg |
|
78 |
77
|
3ad2ant1 |
|
79 |
76 78
|
mpbird |
|
80 |
|
unissel |
|
81 |
66 79 80
|
syl2anc |
|
82 |
81
|
eqcomd |
|
83 |
|
istopon |
|
84 |
47 82 83
|
sylanbrc |
|
85 |
2 3 84
|
ismred |
|