Metamath Proof Explorer


Theorem toponss

Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion toponss J TopOn X A J A X

Proof

Step Hyp Ref Expression
1 elssuni A J A J
2 1 adantl J TopOn X A J A J
3 toponuni J TopOn X X = J
4 3 adantr J TopOn X A J X = J
5 2 4 sseqtrrd J TopOn X A J A X