Metamath Proof Explorer


Theorem topontopn

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tsettps.a A = Base K
tsettps.j J = TopSet K
Assertion topontopn J TopOn A J = TopOpen K

Proof

Step Hyp Ref Expression
1 tsettps.a A = Base K
2 tsettps.j J = TopSet K
3 toponuni J TopOn A A = J
4 eqimss2 A = J J A
5 3 4 syl J TopOn A J A
6 sspwuni J 𝒫 A J A
7 5 6 sylibr J TopOn A J 𝒫 A
8 1 2 topnid J 𝒫 A J = TopOpen K
9 7 8 syl J TopOn A J = TopOpen K