Metamath Proof Explorer


Theorem toprestsubel

Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses toprestsubel.1 φ J Top
toprestsubel.2 φ A J
Assertion toprestsubel φ A J 𝑡 A

Proof

Step Hyp Ref Expression
1 toprestsubel.1 φ J Top
2 toprestsubel.2 φ A J
3 eqid J = J
4 3 topopn J Top J J
5 1 4 syl φ J J
6 1 5 2 restsubel φ A J 𝑡 A