Metamath Proof Explorer


Theorem topsn

Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn ). (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion topsn J TopOn A J = 𝒫 A

Proof

Step Hyp Ref Expression
1 topgele J TopOn A A J J 𝒫 A
2 1 simprd J TopOn A J 𝒫 A
3 pwsn 𝒫 A = A
4 1 simpld J TopOn A A J
5 3 4 eqsstrid J TopOn A 𝒫 A J
6 2 5 eqssd J TopOn A J = 𝒫 A