Metamath Proof Explorer


Theorem topssnei

Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypotheses tpnei.1 X = J
topssnei.2 Y = K
Assertion topssnei J Top K Top X = Y J K nei J S nei K S

Proof

Step Hyp Ref Expression
1 tpnei.1 X = J
2 topssnei.2 Y = K
3 simpl2 J Top K Top X = Y J K x nei J S K Top
4 simprl J Top K Top X = Y J K x nei J S J K
5 simpl1 J Top K Top X = Y J K x nei J S J Top
6 simprr J Top K Top X = Y J K x nei J S x nei J S
7 1 neii1 J Top x nei J S x X
8 5 6 7 syl2anc J Top K Top X = Y J K x nei J S x X
9 1 ntropn J Top x X int J x J
10 5 8 9 syl2anc J Top K Top X = Y J K x nei J S int J x J
11 4 10 sseldd J Top K Top X = Y J K x nei J S int J x K
12 1 neiss2 J Top x nei J S S X
13 5 6 12 syl2anc J Top K Top X = Y J K x nei J S S X
14 1 neiint J Top S X x X x nei J S S int J x
15 5 13 8 14 syl3anc J Top K Top X = Y J K x nei J S x nei J S S int J x
16 6 15 mpbid J Top K Top X = Y J K x nei J S S int J x
17 opnneiss K Top int J x K S int J x int J x nei K S
18 3 11 16 17 syl3anc J Top K Top X = Y J K x nei J S int J x nei K S
19 1 ntrss2 J Top x X int J x x
20 5 8 19 syl2anc J Top K Top X = Y J K x nei J S int J x x
21 simpl3 J Top K Top X = Y J K x nei J S X = Y
22 8 21 sseqtrd J Top K Top X = Y J K x nei J S x Y
23 2 ssnei2 K Top int J x nei K S int J x x x Y x nei K S
24 3 18 20 22 23 syl22anc J Top K Top X = Y J K x nei J S x nei K S
25 24 expr J Top K Top X = Y J K x nei J S x nei K S
26 25 ssrdv J Top K Top X = Y J K nei J S nei K S