Step |
Hyp |
Ref |
Expression |
1 |
|
torsubg.1 |
|
2 |
|
cnvimass |
|
3 |
|
eqid |
|
4 |
3 1
|
odf |
|
5 |
4
|
fdmi |
|
6 |
2 5
|
sseqtri |
|
7 |
6
|
a1i |
|
8 |
|
ablgrp |
|
9 |
|
eqid |
|
10 |
3 9
|
grpidcl |
|
11 |
8 10
|
syl |
|
12 |
1 9
|
od1 |
|
13 |
8 12
|
syl |
|
14 |
|
1nn |
|
15 |
13 14
|
eqeltrdi |
|
16 |
|
ffn |
|
17 |
4 16
|
ax-mp |
|
18 |
|
elpreima |
|
19 |
17 18
|
ax-mp |
|
20 |
11 15 19
|
sylanbrc |
|
21 |
20
|
ne0d |
|
22 |
8
|
ad2antrr |
|
23 |
6
|
sseli |
|
24 |
23
|
ad2antlr |
|
25 |
6
|
sseli |
|
26 |
25
|
adantl |
|
27 |
|
eqid |
|
28 |
3 27
|
grpcl |
|
29 |
22 24 26 28
|
syl3anc |
|
30 |
|
0nnn |
|
31 |
3 1
|
odcl |
|
32 |
24 31
|
syl |
|
33 |
32
|
nn0zd |
|
34 |
3 1
|
odcl |
|
35 |
26 34
|
syl |
|
36 |
35
|
nn0zd |
|
37 |
33 36
|
gcdcld |
|
38 |
37
|
nn0cnd |
|
39 |
38
|
mul02d |
|
40 |
39
|
breq1d |
|
41 |
33 36
|
zmulcld |
|
42 |
|
0dvds |
|
43 |
41 42
|
syl |
|
44 |
40 43
|
bitrd |
|
45 |
|
elpreima |
|
46 |
17 45
|
ax-mp |
|
47 |
46
|
simprbi |
|
48 |
47
|
ad2antlr |
|
49 |
|
elpreima |
|
50 |
17 49
|
ax-mp |
|
51 |
50
|
simprbi |
|
52 |
51
|
adantl |
|
53 |
48 52
|
nnmulcld |
|
54 |
|
eleq1 |
|
55 |
53 54
|
syl5ibcom |
|
56 |
44 55
|
sylbid |
|
57 |
30 56
|
mtoi |
|
58 |
|
simpll |
|
59 |
1 3 27
|
odadd1 |
|
60 |
58 24 26 59
|
syl3anc |
|
61 |
|
oveq1 |
|
62 |
61
|
breq1d |
|
63 |
60 62
|
syl5ibcom |
|
64 |
57 63
|
mtod |
|
65 |
3 1
|
odcl |
|
66 |
29 65
|
syl |
|
67 |
|
elnn0 |
|
68 |
66 67
|
sylib |
|
69 |
68
|
ord |
|
70 |
64 69
|
mt3d |
|
71 |
|
elpreima |
|
72 |
17 71
|
ax-mp |
|
73 |
29 70 72
|
sylanbrc |
|
74 |
73
|
ralrimiva |
|
75 |
|
eqid |
|
76 |
3 75
|
grpinvcl |
|
77 |
8 23 76
|
syl2an |
|
78 |
1 75 3
|
odinv |
|
79 |
8 23 78
|
syl2an |
|
80 |
47
|
adantl |
|
81 |
79 80
|
eqeltrd |
|
82 |
|
elpreima |
|
83 |
17 82
|
ax-mp |
|
84 |
77 81 83
|
sylanbrc |
|
85 |
74 84
|
jca |
|
86 |
85
|
ralrimiva |
|
87 |
3 27 75
|
issubg2 |
|
88 |
8 87
|
syl |
|
89 |
7 21 86 88
|
mpbir3and |
|