Metamath Proof Explorer


Theorem totbndmet

Description: The predicate "totally bounded" implies M is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion totbndmet M TotBnd X M Met X

Proof

Step Hyp Ref Expression
1 istotbnd M TotBnd X M Met X d + v Fin v = X b v x X b = x ball M d
2 1 simplbi M TotBnd X M Met X