Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
tpeq1
Next ⟩
tpeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tpeq1
Description:
Equality theorem for unordered triples.
(Contributed by
NM
, 13-Sep-2011)
Ref
Expression
Assertion
tpeq1
⊢
A
=
B
→
A
C
D
=
B
C
D
Proof
Step
Hyp
Ref
Expression
1
preq1
⊢
A
=
B
→
A
C
=
B
C
2
1
uneq1d
⊢
A
=
B
→
A
C
∪
D
=
B
C
∪
D
3
df-tp
⊢
A
C
D
=
A
C
∪
D
4
df-tp
⊢
B
C
D
=
B
C
∪
D
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
C
D
=
B
C
D